Friday, June 17, 2022
HomeChemistrySemiconducting hematite facilitates microbial and abiotic discount of chromium

Semiconducting hematite facilitates microbial and abiotic discount of chromium


  • Buerge, I. J. & Hug, S. J. Kinetics and pH dependence of Chromium(VI) discount by Iron(II). Environ. Sci. Technol. 31, 1426–1432 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Stewart, S. M., Hofstetter, T. B., Joshi, P. & Gorski, C. A. Linking thermodynamics to pollutant discount kinetics by Fe2+ sure to iron oxides. Environ. Sci. Technol. 52, 5600–5609 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kocar, B. D., Herbel, M. J., Tufano, Ok. J. & Fendorf, S. Contrasting results of dissimilatory iron (III) and arsenic (V) discount on arsenic retention and transport. Environ. Sci. Technol. 40, 6715–6721 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jeon, B.-H., Dempsey, B. A., Burgos, W. D., Barnett, M. O. & Roden, E. E. Chemical discount of U(VI) by Fe(II) on the strong−water interface utilizing pure and artificial Fe(III) oxides. Environ. Sci. Technol. 39, 5642–5649 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Johnston, C. P. & Chrysochoou, M. Mechanisms of chromate adsorption on hematite. Geochim. Cosmochim. Acta 138, 146–157 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bargar, J. R. et al. Spectroscopic affirmation of uranium(VI)−carbonato adsorption complexes on hematite. Environ. Sci. Technol. 33, 2481–2484 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Renock, D., Mueller, M., Yuan, Ok., Ewing, R. C. & Becker, U. The energetics and kinetics of uranyl discount on pyrite, hematite, and magnetite surfaces: A powder microelectrode research. Geochim. Cosmochim. Acta 118, 56–71 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Dong, Y., Sanford, R. A., Chang, Y., McInerney, M. J. & Fouke, B. W. Hematite discount buffers acid era and enhances nutrient uptake by a fermentative iron decreasing bacterium, orenia metallireducens pressure Z6. Environ. Sci. Technol. 51, 232–242 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Behrends, T. & Van Cappellen, P. Transformation of hematite into magnetite throughout dissimilatory iron discount – circumstances and mechanisms. Geomicrobiol. J. 24, 403–416 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Dixit, S. & Hering, J. G. Comparability of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ. Sci. Technol. 37, 4182–4189 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dzombak, D. A. & Morel, F. M. M. Floor Complexation Modeling: Hydrous Ferric Oxide (Wiley, 1990).


    Google Scholar
     

  • Badalamenti, J. P., Summers, Z. M., Chan, C. H., Gralnick, J. A. & Bond, D. R. Isolation and genomic characterization of ‘Desulfuromonas soudanensis WTL’, a metal- and electrode-respiring bacterium from anoxic deep subsurface brine. Entrance. Microbiol. 7, 913 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, M. A. & Kocar, B. D. Radium sorption to iron (Hydr)oxides, pyrite, and montmorillonite: Implications for mobility. Environ. Sci. Technol. 52, 4023–4030 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang, X., Hou, X., Tune, F., Zhao, J. & Zhang, L. Aspect-dependent Cr(VI) adsorption of hematite nanocrystals. Environ. Sci. Technol. 50, 1964–1972 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Amstaetter, Ok., Borch, T., Larese-Casanova, P. & Kappler, A. Redox Transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ. Sci. Technol. 44, 102–108 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Collins, R. N. & Rosso, Ok. M. Mechanisms and charges of U(VI) discount by Fe(II) in homogeneous aqueous resolution and the function of U(V) disproportionation. J. Phys. Chem. A 121, 6603–6613 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee, J. H. et al. Fe(II)- and sulfide-facilitated discount of 99Tc(VII)O4- in microbially decreased hyporheic zone sediments. Geochim. Cosmochim. Acta 136, 247–264 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Huang, X., Hou, X., Tune, F., Zhao, J. & Zhang, L. Ascorbate induced aspect dependent reductive dissolution of hematite nanocrystals. J. Phys. Chem. C 121, 1113–1121 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Huang, J. et al. Fe(II) redox chemistry within the atmosphere. Chem. Rev. 121, 8161–8233 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Canfield, D. E., Raiswell, R. & Bottrell, S. H. The reactivity of sedimentary iron minerals towards sulfide. Am. J. Sci. 292, 659–683 (1992).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Meitl, L. A. et al. Electrochemical interplay of Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes. Geochim. Cosmochim. Acta 73, 5292–5307 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Eggleston, C. M., Khare, N. & Lovelace, D. M. Cytochrome c interplay with hematite (α-Fe2O3) surfaces. J. Electron Spectrosc. Relat. Phenom. 150, 220–227 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Eggleston, C. M. Towards new makes use of for hematite. Science 320, 184–185 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lovley, D. R. Dissimilatory metallic discount. Annu. Rev. Microbiol. 47, 263–290 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Michelson, Ok., Sanford, R. A., Valocchi, A. J. & Werth, C. J. Nanowires of geobacter sulfurreducens require redox cofactors to cut back metals in pore areas too small for cell passage. Environ. Sci. Technol. 51, 11660–11668 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reguera, G. et al. Extracellular electron switch through microbial nanowires. Nature 435, 1098–1101 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gorby, Y. A. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis pressure MR-1 and different microorganisms. Proc. Natl. Acad. Sci. U. S. A. 103, 11358–11363 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Logan, B. E. et al. Microbial gasoline cells: Methodology and know-how. Environ. Sci. Technol. 40, 5181–5192 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Min, B., Cheng, S. & Logan, B. E. Electrical energy era utilizing membrane and salt bridge microbial gasoline cells. Water Res. 39, 1675–1686 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gorski, C. A. & Scherer, M. M. Fe2+ sorption on the Fe oxide-water interface: A revised conceptual framework. ACS Symp. Ser. 1071, 315–343 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Handler, R. M. et al. Fe(II)-catalyzed recrystallization of goethite revisited. Environ. Sci. Technol. 48, 11302–11311 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yanina, S. V. & Rosso, Ok. M. Linked reactivity at mineral-water interfaces by means of bulk crystal conduction. Science 320, 218–222 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Frierdich, A. J. et al. Iron atom alternate between hematite and aqueous Fe(II). Environ. Sci. Technol. 49, 8479–8486 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gorski, C. A. & Fantle, M. S. Secure mineral recrystallization in low temperature aqueous programs: A crucial assessment. Geochim. Cosmochim. Acta 198, 439–465 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zarzycki, P. & Rosso, Ok. M. Stochastic simulation of isotopic alternate mechanisms for Fe(II)-catalyzed recrystallization of goethite. Environ. Sci. Technol. 51, 7552–7559 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nico, P. S., Stewart, B. D. & Fendorf, S. Incorporation of oxidized uranium into Fe (Hydr)oxides throughout Fe(II) catalyzed remineralization. Environ. Sci. Technol. 43, 7391–7396 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Latta, D. E., Gorski, C. A. & Scherer, M. M. Affect of Fe2+-catalysed iron oxide recrystallization on metallic biking. Biochem. Soc. Trans. 40, 1191–1197 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xiao, W., Jones, A. M., Li, X., Collins, R. N. & Waite, T. D. Impact of Shewanella oneidensis on the kinetics of Fe(II)-catalyzed transformation of ferrihydrite to crystalline iron oxides. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.7b05098 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, C. et al. Anaerobic oxidation of methane by Mn oxides in sulfate-poor environments. Geology 49, 761–766 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Enning, D. & Garrelfs, J. Corrosion of iron by sulfate-reducing micro organism: New views of an outdated drawback. Appl. Environ. Microbiol. 80, 1226–1236 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Liu, T. et al. Conduction band of hematite can mediate cytochrome discount by Fe(II) below darkish and anoxic circumstances. Environ. Sci. Technol. 54, 4810–4819 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hausladen, D. M., Alexander-Ozinskas, A., McClain, C. & Fendorf, S. Hexavalent chromium sources and distribution in california groundwater. Environ. Sci. Technol. 52, 8242–8251 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hausladen, D. M. & Fendorf, S. Hexavalent chromium era inside naturally structured soils and sediments. Environ. Sci. Technol. 51, 2058–2067 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Richard, F. C. & Bourg, A. C. M. Aqueous geochemistry of chromium: A assessment. Water Res. 25, 807–816 (1991).

    CAS 
    Article 

    Google Scholar
     

  • Ellis, A. S., Johnson, T. M. & Bullen, T. D. Cr isotopes ratios and the destiny of hexavalent chromium within the atmosphere. Science 295, 2060–2062 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fendorf, S., Wielinga, B. W. & Hansel, C. M. Chromium transformations in pure environments: The function of organic and abiological processes in Chromium(VI) discount. Int. Geol. Rev. 42, 691–701 (2000).

    Article 

    Google Scholar
     

  • Hansel, C. M., Wielinga, B. W. & Fendorf, S. Structural and compositional evolution of Cr/Fe solids after oblique chromate discount by dissimilatory iron-reducing micro organism. Geochim. Cosmochim. Acta 67, 401–412 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tomaszewski, E. J., Lee, S., Rudolph, J., Xu, H. & Ginder-Vogel, M. The reactivity of Fe(II) related to goethite fashioned throughout quick redox cycles towards Cr(VI) discount below oxic circumstances. Chem. Geol. 464, 101–109 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Biesinger, M. C. et al. Resolving floor chemical states in XPS evaluation of first row transition metals, oxides and hydroxides: Cr, Mn, Fe Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Biesinger, M. C., Brown, C., Mycroft, J. R., Davidson, R. D. & McIntyre, N. S. X-ray photoelectron spectroscopy research of chromium compounds. Surf. Interface Anal. 36, 1550–1563 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Chowdhury, S. R., Yanful, E. Ok. & Pratt, A. R. Chemical states in XPS and Raman evaluation throughout elimination of Cr(VI) from contaminated water by combined maghemite–magnetite nanoparticles. J. Hazard. Mater. 235–236, 246–256 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Wielinga, B., Mizuba, M. M., Hansel, C. M. & Fendorf, S. Iron promoted discount of chromate by dissimilatory iron-reducing micro organism. Environ. Sci. Technol. 35, 522–527 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tomaszewski, E. J., Cronk, S. S., Gorski, C. A. & Ginder-Vogel, M. The function of dissolved Fe(II) focus within the mineralogical evolution of Fe (hydr)oxides throughout redox biking. Chem. Geol. 438, 163–170 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Liu, C., Zachara, J. M., Gorby, Y. A., Szecsody, J. E. & Brown, C. F. Microbial discount of Fe(III) and sorption/precipitation of Fe(II) on Shewanella putrefaciens pressure CN32. Environ. Sci. Technol. 35, 1385–1393 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boland, D. D., Collins, R. N., Glover, C. J. & David Waite, T. An in situ quick-EXAFS and redox potential research of the Fe(II)-catalysed transformation of ferrihydrite. Colloids Surf. Physicochem. Eng. Asp. 435, 2–8 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Fredrickson, J. Ok. et al. Biogenic iron mineralization accompanying the dissimilatory discount of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta 62, 3239–3257 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Rotaru, A. E. et al. Direct interspecies electron switch between Geobacter metallireducens and Methanosarcina barkeri. Appl. Environ. Microbiol. 80, 4599–4605 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lovley, D. R. Pleased collectively: Microbial communities that hook as much as swap electrons. ISME J. 11, 1–10 (2016).


    Google Scholar
     

  • Canfield, D. E., Thamdrup, B. & Hansen, J. W. The anaerobic degradation of natural matter in Danish coastal sediments: Iron discount, manganese discount, and sulfate discount. Geochim. Cosmochim. Acta 57, 3867–3883 (1993).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nakamura, R., Kai, F., Okamoto, A., Newton, G. J. & Hashimoto, Ok. Self-constructed electrically conductive bacterial networks. Angew. Chem. Int. Ed. 48, 508–511 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Kato, S., Nakamura, R., Kai, F., Watanabe, Ok. & Hashimoto, Ok. Respiratory interactions of soil micro organism with (semi)conductive iron-oxide minerals. Environ. Microbiol. 12, 3114–3123 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nielsen, L. P., Risgaard-Petersen, N., Fossing, H., Christensen, P. B. & Sayama, M. Electrical currents couple spatially separated biogeochemical processes in marine sediment. Nature 463, 1071–1074 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Davy, H. X. I. I. Further experiments and observations on the appliance {of electrical} combos to the preservation of the copper sheathing of ships, and to different functions. Philos. Trans. R. Soc. Lond. 114, 242–246 (1824).

    ADS 

    Google Scholar
     

  • Davy, H. V. I. On the corrosion of copper sheeting by sea water, and on strategies of stopping this impact; and on their utility to ships of struggle and different ships. Philos. Trans. R. Soc. Lond. 114, 151–158 (1824).

    ADS 

    Google Scholar
     

  • Pearce, C. I. et al. Pore-scale characterization of biogeochemical controls on iron and uranium speciation below circulation circumstances. Environ. Sci. Technol. 46, 7992–8000 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liger, E., Charlet, L. & Cappellen, P. V. Floor catalysis of uranium (VI) discount by iron (II). Geochim. Cosmochim. Acta 63, 2939–2955 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Newsome, L., ALopez Adams, R., Downie, H. F., Moore, Ok. L. & Lloyd, J. R. NanoSIMS imaging of extracellular electron transport processes throughout microbial iron(III) discount. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy104 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edwards, R. A. et al. Utilizing pyrosequencing to make clear deep mine microbial ecology. BMC Genomics https://doi.org/10.1186/1471-2164-7-57 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dryden, M. D. M. & Wheeler, A. R. DStat: A flexible, open-source potentiostat for electroanalysis and integration. PLoS ONE 10, 1–17 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Python Software program Basis. Python Language Reference. https://www.python.org/ (2010) doi:https://doi.org/10.1201/9781584889304.axd.

  • Jones, E., Oliphant, E. & Peterson, P. SciPy: Open supply scientific instruments for Python. www.scipy.org (2017).

  • Stookey, L. L. Ferrozine–-a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).

    CAS 
    Article 

    Google Scholar
     

  • Viollier, E., Inglett, P. W., Hunter, Ok., Roychoudhury, A. N. & Van Cappellen, P. The ferrozine technique revisited: Fe(II)/Fe(III) dedication in pure waters. Appl. Geochem. 15, 785–790 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments