Buerge, I. J. & Hug, S. J. Kinetics and pH dependence of Chromium(VI) discount by Iron(II). Environ. Sci. Technol. 31, 1426–1432 (1997).
Stewart, S. M., Hofstetter, T. B., Joshi, P. & Gorski, C. A. Linking thermodynamics to pollutant discount kinetics by Fe2+ sure to iron oxides. Environ. Sci. Technol. 52, 5600–5609 (2018).
Kocar, B. D., Herbel, M. J., Tufano, Ok. J. & Fendorf, S. Contrasting results of dissimilatory iron (III) and arsenic (V) discount on arsenic retention and transport. Environ. Sci. Technol. 40, 6715–6721 (2006).
Jeon, B.-H., Dempsey, B. A., Burgos, W. D., Barnett, M. O. & Roden, E. E. Chemical discount of U(VI) by Fe(II) on the strong−water interface utilizing pure and artificial Fe(III) oxides. Environ. Sci. Technol. 39, 5642–5649 (2005).
Johnston, C. P. & Chrysochoou, M. Mechanisms of chromate adsorption on hematite. Geochim. Cosmochim. Acta 138, 146–157 (2014).
Bargar, J. R. et al. Spectroscopic affirmation of uranium(VI)−carbonato adsorption complexes on hematite. Environ. Sci. Technol. 33, 2481–2484 (1999).
Renock, D., Mueller, M., Yuan, Ok., Ewing, R. C. & Becker, U. The energetics and kinetics of uranyl discount on pyrite, hematite, and magnetite surfaces: A powder microelectrode research. Geochim. Cosmochim. Acta 118, 56–71 (2013).
Dong, Y., Sanford, R. A., Chang, Y., McInerney, M. J. & Fouke, B. W. Hematite discount buffers acid era and enhances nutrient uptake by a fermentative iron decreasing bacterium, orenia metallireducens pressure Z6. Environ. Sci. Technol. 51, 232–242 (2017).
Behrends, T. & Van Cappellen, P. Transformation of hematite into magnetite throughout dissimilatory iron discount – circumstances and mechanisms. Geomicrobiol. J. 24, 403–416 (2007).
Dixit, S. & Hering, J. G. Comparability of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ. Sci. Technol. 37, 4182–4189 (2003).
Dzombak, D. A. & Morel, F. M. M. Floor Complexation Modeling: Hydrous Ferric Oxide (Wiley, 1990).
Badalamenti, J. P., Summers, Z. M., Chan, C. H., Gralnick, J. A. & Bond, D. R. Isolation and genomic characterization of ‘Desulfuromonas soudanensis WTL’, a metal- and electrode-respiring bacterium from anoxic deep subsurface brine. Entrance. Microbiol. 7, 913 (2016).
Chen, M. A. & Kocar, B. D. Radium sorption to iron (Hydr)oxides, pyrite, and montmorillonite: Implications for mobility. Environ. Sci. Technol. 52, 4023–4030 (2018).
Huang, X., Hou, X., Tune, F., Zhao, J. & Zhang, L. Aspect-dependent Cr(VI) adsorption of hematite nanocrystals. Environ. Sci. Technol. 50, 1964–1972 (2016).
Amstaetter, Ok., Borch, T., Larese-Casanova, P. & Kappler, A. Redox Transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ. Sci. Technol. 44, 102–108 (2010).
Collins, R. N. & Rosso, Ok. M. Mechanisms and charges of U(VI) discount by Fe(II) in homogeneous aqueous resolution and the function of U(V) disproportionation. J. Phys. Chem. A 121, 6603–6613 (2017).
Lee, J. H. et al. Fe(II)- and sulfide-facilitated discount of 99Tc(VII)O4- in microbially decreased hyporheic zone sediments. Geochim. Cosmochim. Acta 136, 247–264 (2014).
Huang, X., Hou, X., Tune, F., Zhao, J. & Zhang, L. Ascorbate induced aspect dependent reductive dissolution of hematite nanocrystals. J. Phys. Chem. C 121, 1113–1121 (2017).
Huang, J. et al. Fe(II) redox chemistry within the atmosphere. Chem. Rev. 121, 8161–8233 (2021).
Canfield, D. E., Raiswell, R. & Bottrell, S. H. The reactivity of sedimentary iron minerals towards sulfide. Am. J. Sci. 292, 659–683 (1992).
Meitl, L. A. et al. Electrochemical interplay of Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes. Geochim. Cosmochim. Acta 73, 5292–5307 (2009).
Eggleston, C. M., Khare, N. & Lovelace, D. M. Cytochrome c interplay with hematite (α-Fe2O3) surfaces. J. Electron Spectrosc. Relat. Phenom. 150, 220–227 (2006).
Eggleston, C. M. Towards new makes use of for hematite. Science 320, 184–185 (2008).
Lovley, D. R. Dissimilatory metallic discount. Annu. Rev. Microbiol. 47, 263–290 (1993).
Michelson, Ok., Sanford, R. A., Valocchi, A. J. & Werth, C. J. Nanowires of geobacter sulfurreducens require redox cofactors to cut back metals in pore areas too small for cell passage. Environ. Sci. Technol. 51, 11660–11668 (2017).
Reguera, G. et al. Extracellular electron switch through microbial nanowires. Nature 435, 1098–1101 (2005).
Gorby, Y. A. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis pressure MR-1 and different microorganisms. Proc. Natl. Acad. Sci. U. S. A. 103, 11358–11363 (2006).
Logan, B. E. et al. Microbial gasoline cells: Methodology and know-how. Environ. Sci. Technol. 40, 5181–5192 (2006).
Min, B., Cheng, S. & Logan, B. E. Electrical energy era utilizing membrane and salt bridge microbial gasoline cells. Water Res. 39, 1675–1686 (2005).
Gorski, C. A. & Scherer, M. M. Fe2+ sorption on the Fe oxide-water interface: A revised conceptual framework. ACS Symp. Ser. 1071, 315–343 (2011).
Handler, R. M. et al. Fe(II)-catalyzed recrystallization of goethite revisited. Environ. Sci. Technol. 48, 11302–11311 (2014).
Yanina, S. V. & Rosso, Ok. M. Linked reactivity at mineral-water interfaces by means of bulk crystal conduction. Science 320, 218–222 (2008).
Frierdich, A. J. et al. Iron atom alternate between hematite and aqueous Fe(II). Environ. Sci. Technol. 49, 8479–8486 (2015).
Gorski, C. A. & Fantle, M. S. Secure mineral recrystallization in low temperature aqueous programs: A crucial assessment. Geochim. Cosmochim. Acta 198, 439–465 (2017).
Zarzycki, P. & Rosso, Ok. M. Stochastic simulation of isotopic alternate mechanisms for Fe(II)-catalyzed recrystallization of goethite. Environ. Sci. Technol. 51, 7552–7559 (2017).
Nico, P. S., Stewart, B. D. & Fendorf, S. Incorporation of oxidized uranium into Fe (Hydr)oxides throughout Fe(II) catalyzed remineralization. Environ. Sci. Technol. 43, 7391–7396 (2009).
Latta, D. E., Gorski, C. A. & Scherer, M. M. Affect of Fe2+-catalysed iron oxide recrystallization on metallic biking. Biochem. Soc. Trans. 40, 1191–1197 (2012).
Xiao, W., Jones, A. M., Li, X., Collins, R. N. & Waite, T. D. Impact of Shewanella oneidensis on the kinetics of Fe(II)-catalyzed transformation of ferrihydrite to crystalline iron oxides. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.7b05098 (2017).
Cai, C. et al. Anaerobic oxidation of methane by Mn oxides in sulfate-poor environments. Geology 49, 761–766 (2021).
Enning, D. & Garrelfs, J. Corrosion of iron by sulfate-reducing micro organism: New views of an outdated drawback. Appl. Environ. Microbiol. 80, 1226–1236 (2014).
Liu, T. et al. Conduction band of hematite can mediate cytochrome discount by Fe(II) below darkish and anoxic circumstances. Environ. Sci. Technol. 54, 4810–4819 (2020).
Hausladen, D. M., Alexander-Ozinskas, A., McClain, C. & Fendorf, S. Hexavalent chromium sources and distribution in california groundwater. Environ. Sci. Technol. 52, 8242–8251 (2018).
Hausladen, D. M. & Fendorf, S. Hexavalent chromium era inside naturally structured soils and sediments. Environ. Sci. Technol. 51, 2058–2067 (2017).
Richard, F. C. & Bourg, A. C. M. Aqueous geochemistry of chromium: A assessment. Water Res. 25, 807–816 (1991).
Ellis, A. S., Johnson, T. M. & Bullen, T. D. Cr isotopes ratios and the destiny of hexavalent chromium within the atmosphere. Science 295, 2060–2062 (2002).
Fendorf, S., Wielinga, B. W. & Hansel, C. M. Chromium transformations in pure environments: The function of organic and abiological processes in Chromium(VI) discount. Int. Geol. Rev. 42, 691–701 (2000).
Hansel, C. M., Wielinga, B. W. & Fendorf, S. Structural and compositional evolution of Cr/Fe solids after oblique chromate discount by dissimilatory iron-reducing micro organism. Geochim. Cosmochim. Acta 67, 401–412 (2003).
Tomaszewski, E. J., Lee, S., Rudolph, J., Xu, H. & Ginder-Vogel, M. The reactivity of Fe(II) related to goethite fashioned throughout quick redox cycles towards Cr(VI) discount below oxic circumstances. Chem. Geol. 464, 101–109 (2017).
Biesinger, M. C. et al. Resolving floor chemical states in XPS evaluation of first row transition metals, oxides and hydroxides: Cr, Mn, Fe Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011).
Biesinger, M. C., Brown, C., Mycroft, J. R., Davidson, R. D. & McIntyre, N. S. X-ray photoelectron spectroscopy research of chromium compounds. Surf. Interface Anal. 36, 1550–1563 (2004).
Chowdhury, S. R., Yanful, E. Ok. & Pratt, A. R. Chemical states in XPS and Raman evaluation throughout elimination of Cr(VI) from contaminated water by combined maghemite–magnetite nanoparticles. J. Hazard. Mater. 235–236, 246–256 (2012).
Wielinga, B., Mizuba, M. M., Hansel, C. M. & Fendorf, S. Iron promoted discount of chromate by dissimilatory iron-reducing micro organism. Environ. Sci. Technol. 35, 522–527 (2001).
Tomaszewski, E. J., Cronk, S. S., Gorski, C. A. & Ginder-Vogel, M. The function of dissolved Fe(II) focus within the mineralogical evolution of Fe (hydr)oxides throughout redox biking. Chem. Geol. 438, 163–170 (2016).
Liu, C., Zachara, J. M., Gorby, Y. A., Szecsody, J. E. & Brown, C. F. Microbial discount of Fe(III) and sorption/precipitation of Fe(II) on Shewanella putrefaciens pressure CN32. Environ. Sci. Technol. 35, 1385–1393 (2001).
Boland, D. D., Collins, R. N., Glover, C. J. & David Waite, T. An in situ quick-EXAFS and redox potential research of the Fe(II)-catalysed transformation of ferrihydrite. Colloids Surf. Physicochem. Eng. Asp. 435, 2–8 (2013).
Fredrickson, J. Ok. et al. Biogenic iron mineralization accompanying the dissimilatory discount of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta 62, 3239–3257 (1998).
Rotaru, A. E. et al. Direct interspecies electron switch between Geobacter metallireducens and Methanosarcina barkeri. Appl. Environ. Microbiol. 80, 4599–4605 (2014).
Lovley, D. R. Pleased collectively: Microbial communities that hook as much as swap electrons. ISME J. 11, 1–10 (2016).
Canfield, D. E., Thamdrup, B. & Hansen, J. W. The anaerobic degradation of natural matter in Danish coastal sediments: Iron discount, manganese discount, and sulfate discount. Geochim. Cosmochim. Acta 57, 3867–3883 (1993).
Nakamura, R., Kai, F., Okamoto, A., Newton, G. J. & Hashimoto, Ok. Self-constructed electrically conductive bacterial networks. Angew. Chem. Int. Ed. 48, 508–511 (2009).
Kato, S., Nakamura, R., Kai, F., Watanabe, Ok. & Hashimoto, Ok. Respiratory interactions of soil micro organism with (semi)conductive iron-oxide minerals. Environ. Microbiol. 12, 3114–3123 (2010).
Nielsen, L. P., Risgaard-Petersen, N., Fossing, H., Christensen, P. B. & Sayama, M. Electrical currents couple spatially separated biogeochemical processes in marine sediment. Nature 463, 1071–1074 (2010).
Davy, H. X. I. I. Further experiments and observations on the appliance {of electrical} combos to the preservation of the copper sheathing of ships, and to different functions. Philos. Trans. R. Soc. Lond. 114, 242–246 (1824).
Davy, H. V. I. On the corrosion of copper sheeting by sea water, and on strategies of stopping this impact; and on their utility to ships of struggle and different ships. Philos. Trans. R. Soc. Lond. 114, 151–158 (1824).
Pearce, C. I. et al. Pore-scale characterization of biogeochemical controls on iron and uranium speciation below circulation circumstances. Environ. Sci. Technol. 46, 7992–8000 (2012).
Liger, E., Charlet, L. & Cappellen, P. V. Floor catalysis of uranium (VI) discount by iron (II). Geochim. Cosmochim. Acta 63, 2939–2955 (1999).
Newsome, L., ALopez Adams, R., Downie, H. F., Moore, Ok. L. & Lloyd, J. R. NanoSIMS imaging of extracellular electron transport processes throughout microbial iron(III) discount. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy104 (2018).
Edwards, R. A. et al. Utilizing pyrosequencing to make clear deep mine microbial ecology. BMC Genomics https://doi.org/10.1186/1471-2164-7-57 (2006).
Dryden, M. D. M. & Wheeler, A. R. DStat: A flexible, open-source potentiostat for electroanalysis and integration. PLoS ONE 10, 1–17 (2015).
Python Software program Basis. Python Language Reference. https://www.python.org/ (2010) doi:https://doi.org/10.1201/9781584889304.axd.
Jones, E., Oliphant, E. & Peterson, P. SciPy: Open supply scientific instruments for Python. www.scipy.org (2017).
Stookey, L. L. Ferrozine–-a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).
Viollier, E., Inglett, P. W., Hunter, Ok., Roychoudhury, A. N. & Van Cappellen, P. The ferrozine technique revisited: Fe(II)/Fe(III) dedication in pure waters. Appl. Geochem. 15, 785–790 (2000).