Steinhorst, L. & Kudla, J. Sexual attraction channelled in moss. Nature 549, 35–36 (2017).
Botelho, R. J. & Grinstein, S. Phagocytosis. Curr. Biol. 21, R533–R538 (2011).
Popkin, G. The physics of life. Nature 529, 16–18 (2016).
Needleman, D. & Dogic, Z. Lively matter on the interface between supplies science and cell biology. Nat. Rev. Mater. 2, 17048 (2017).
Aberts, B. et al. Molecular Biology of the Cell (Garland Publishing, 1983).
Carmona-Fontaine, C. et al. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456, 957–961 (2008).
Shemi, A. et al. Dimethyl sulfide mediates microbial predator–prey interactions between zooplankton and algae within the ocean. Nat. Microbiol. 6, 1357–1366 (2021).
Björkström, N. Ok., Strunz, B. & Ljunggren, H. G. Pure killer cells in antiviral immunity. Nat. Rev. Immunol. 22, 112–123 (2022).
Testa, A. et al. Sustained enzymatic exercise and move in crowded protein droplets. Nat. Commun. 12, 6293 (2021).
Cazimoglu, I., Sales space, M. J. & Bayley, H. A lipid-based droplet processor for parallel chemical indicators. ACS Nano. 15, 20214–20224 (2021).
Lach, S., Yoon, S. M. & Grzybowski, B. A. Tactic, reactive, and practical droplets outdoors of equilibrium. Chem. Soc. Rev. 45, 4766–4796 (2016).
Lohse, D. & Zhang, X. Physicochemical hydrodynamics of droplets out of equilibrium. Nat. Rev. Phys. 2, 426–443 (2020).
Nakashima, Ok. Ok., van Haren, M. H. I., André, A. A. M., Robu, I. & Evan Spruijt, E. Lively coacervate droplets are protocells that develop and resist Ostwald ripening. Nat. Commun. 12, 3819 (2021).
Qiao, Y., Li, M., Sales space, R. & Mann, S. Predatory behaviour in artificial protocell communities. Nat. Chem. 9, 110–119 (2017).
Meredith, C. H. et al. Predator–prey interactions between droplets pushed by non-reciprocal oil trade. Nat. Chem. 12, 1136–1142 (2020).
Zwicker, D., Seyboldt, R., Weber, C., Hyman, A. A. & Jülicher, F. Development and division of energetic droplets supplies a mannequin for protocells. Nat. Phys. 13, 408–413 (2017).
Matsuo, M. & Kurihara, Ok. Proliferating coacervate droplets because the lacking hyperlink between chemistry and biology within the origins of life. Nat. Commun. 12, 5487 (2021).
Taylor, J. W., Eghtesadi, S. A., Factors, L. J., Liu, T. & Cronin, L. Autonomous mannequin protocell division pushed by molecular replication. Nat. Commun. 8, 237 (2017).
Tang, X., Li, W. & Wang, L. Furcated droplet motility on crystalline surfaces. Nat. Nanotechnol. 16, 1106–1112 (2021).
Cira, N., Benusiglio, A. & Prakash, M. Vapour-mediated sensing and motility in two-component droplets. Nature 519, 446–450 (2015).
Zhang, J. et al. Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused floor. Nat. Commun. 12, 7136 (2021).
Hartmann, J., Schür, M. T. & Hardt, S. Manipulation and management of droplets on surfaces in a homogeneous electrical discipline. Nat. Commun. 13, 289 (2022).
Zhang, Q., Feng, S., Lin, L., Mao, S. & Lin, J. M. Rising open microfluidics for cell manipulation. Chem. Soc. Rev. 50, 5333–5348 (2021).
Dak, P. et al. Droplet-based biosensing for lab-on-a-chip, open microfluidics platforms. Biosensors 6, 14 (2016).
Ichimura, Ok., Oh, S. Ok. & Nakagawa, M. Mild-driven movement of liquids on a photoresponsive floor. Science 288, 1624–1626 (2000).
Liu, G. L., Kim, J., Lu, Y. U. & Lee, L. P. Optofluidic management utilizing photothermal nanoparticles. Nat. Mater. 5, 27–32 (2006).
Singh, D. P. et al. Interface-mediated spontaneous symmetry breaking and mutual communication between drops containing chemically energetic particles. Nat. Commun. 11, 2210 (2020).
Pollack, M. G., Shenderov, A. D. & Truthful, R. B. Electrowetting-based actuation of droplets for built-in microfluidics. Lab Chip. 2, 96–101 (2002).
Chaudhury, M. Ok. & Whitesides, G. M. Learn how to make water run uphill. Science 256, 1539–1541 (1992).
Solar, Q. et al. Floor cost printing for programmed droplet transport. Nat. Mater. 18, 936–941 (2019).
Mazaltarim, A. J., Bowen, J. J., Taylor, J. M. & Morin, S. A. Dynamic manipulation of droplets utilizing mechanically tunable microtextured chemical gradients. Nat. Commun. 12, 3114 (2021).
Khoo, H. S. & Tseng, F. G. Spontaneous high-speed transport of subnanoliter water droplet on gradient nanotextured surfaces. Appl. Phys. Lett. 95, 063108 (2009).
Malvadkar, N., Hancock, M., Sekeroglu, Ok., Dressick, W. J. & Demirel, M. C. An engineered anisotropic nanofilm with unidirectional wetting properties. Nat. Mater. 9, 1023–1028 (2010).
Li, Q. et al. Reversible construction engineering of bioinspired anisotropic floor for droplet recognition and transportation. Adv. Sci. 7, 2001650 (2020).
Sanchez, C., Boissière, C., Grosso, D., Laberty, C. & Nicole, L. Design, synthesis, and properties of inorganic and hybrid skinny movies having periodically organized nanoporosity. Chem. Mater. 20, 682–737 (2008).
Innocenzi, P. & Malfatti, L. Mesoporous skinny movies: properties and purposes. Chem. Soci. Rev. 42, 4198 (2013).
Mercuri, M., Pierpauli, Ok., Bellino, M. G. & Berli, C. L. Advanced filling dynamics in mesoporous skinny movies. Langmuir 33, 152–157 (2017).
Gimenez, R., Soler-Illia, G. J., Berli, C. L. A. & Bellino, M. G. Nanopore-Enhanced Drop Evaporation: When Cooler or Extra Saline Water Droplets Evaporate Sooner. ACS Nano 14, 2702–2708 (2020).
Ceratti, D. R. et al. Vital impact of pore traits on capillary infiltration in mesoporous movies. Nanoscale 7, 5371–5382 (2015).
Soler-Illia, G. J. A. A. et al. Mesoporous hybrid and nanocomposite skinny movies. A sol-gel toolbox to create nanoconfined methods with localized chemical properties. J. Sol.-Gel Sci. Technol. 57, 299–312 (2011).
Xue, Y., Markmann, J., Duan, H., Weissmüller, J. & Huber, P. Switchable imbibition in nanoporous gold. Nat. Commun. 5, 4237 (2014).
Washburn, E. W. The dynamics of capillary move. Phys. Rev. 17, 273–283 (1921).
Baxendale, J. H. Decomposition of hydrogen peroxide by catalysts in homogeneous aqueous answer. Adv. Catal. 4, 31–86 (1952).
Zhang, H. et al. Phosphorylation of the myosin regulatory gentle chain performs a job in motility and polarity throughout Dictyostelium chemotaxis. J. Cell Sci. 115, 1733–1747 (2002).
de Gennes, P. G., Brochard-Wyart, F. & Queré, D. Capillarity and Wetting Phenomena, Springer-Verlag, New York, USA 2004.
Israelachvili, J. N. Intermolecular and Floor Forces, Third Version, Tutorial Press, San Diego, USA, 2011
Phibbs, M. Ok. & Giguère, P. A. Hydrogen peroxide and its analogues: I. Density, refractive index, viscosity, and floor rigidity of deuterium peroxide–deuterium oxide options. Can. J. Chem. 29, 173–181 (1951).
Abdekhodaie, M. J., Cheng, J. & Wu, X. Y. Impact of formulation components on the bioactivity of glucose oxidase encapsulated chitosan-alginate microspheres: in vitro investigation and mathematical mannequin prediction. Chem. Eng. Sci. 125, 4–12 (2015).
Weigler, M. et al. Static discipline gradient NMR research of water diffusion in mesoporous silica. Phys. Chem. Chem. Phys. 22, 13989–13998 (2020).
Gonzalez Solveyra, E., de la Llave, E., Molinero, V., Soler-Illia, G. J. & Scherlis, D. A. Construction, dynamics, and section conduct of water in TiO2 nanopores. J. Phys. Chem. C. 117, 3330–3342 (2013).
Blumm, J. & Lindemann, A. Characterization of the thermophysical properties of molten polymers and liquids utilizing the flash method. Excessive. Temp. Excessive. Press. 35/36, 627–632 (2003). /2007.
Schriven, L. E. & Sternling, C. V. The Marangoni impact. Nature 187, 186–188 (1960).
Probstein, R. F. Physicochemical hydrodynamics: an introduction. John Wiley & Sons (2005).
Pesach, D. & Marmur, A. Marangoni results within the spreading of liquid mixtures on a stable. Langmuir 3, 519–524 (1987).
Nikolov, A. D. et al. Superspreading pushed by Marangoni move. Adv. Colloid Interface Sci. 96, 325–338 (2002).
Maass, O. & Hatcher, W. H. The properties of pure hydrogen peroxide. I. J. Am. Chem. Soc. 42, 2548–2569 (1920).
Lee, J. I., Yim, B. S. & Kim, J. M. Impact of dissolved-gas focus on bulk nanobubbles technology utilizing ultrasonication. Sci. Rep. 10, 1–7 (2020).
Jain, S. & Qiao, L. Molecular dynamics simulations of the floor rigidity of oxygen-supersaturated water. AIP Adv. 7, 045001 (2017).
Ali, Ok. & Bilal, S. Floor tensions and thermodynamic parameters of floor formation of aqueous salt options: III. Aqueous answer of KCl, KBr and KI. Colloids Surf. A: Physicochem. Eng. Asp. 337, 194–199 (2009).
Xue, N., Pack, M. Y. & Stone, H. A. Marangoni-driven movie climbing on a draining pre-wetted movie. J. Fluid Mech. 886, A24 (2020).
de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–863 (1985).
Jain, P. Ok. & Ahmad, Ok. A Textbook of Analytical Geometry of Two Dimensions. Hoboke n, NJ, USA: Wiley, (1986).
Mercanti, V., Charette, S. J., Bennett, N., Ryckewaert, J.-J. & Letourner, F. Selective membrane exclusion in phagocytic and macropinocytic cups. J. Cell Sci. 119, 4079–4087 (2006).
Desjardins, M., Houde, M. & Gagnon, E. Phagocytosis: the convoluted approach from diet to adaptive immunity. Immunol. Rev. 207, 158–165 (2005).
Karpitschka, S. & Riegler, H. Noncoalescence of sessile drops from totally different however miscible liquids: hydrodynamic evaluation of the dual drop contour as a self-stabilizing touring wave. Phys. Rev. Lett. 109, 066103 (2012).
Ng, V. V., Sellier, M. & Nock, V. Marangoni-improved mixing in a two-droplet system. Interfacial Phenom. Warmth. Transf. 5, 81–95 (2017).
Sykes, T. C. et al. Floor jets and inner mixing in the course of the coalescence of impacting and sessile droplets. Phys. Rev. Fluids. 5, 023602 (2020).
Teleki, A., Bjelobrk, N. & Pratsinis, S. E. Steady floor functionalization of flame-made TiO2 nanoparticles. Langmuir 26, 5815–5822 (2010).
Calvo, A. et al. Mesoporous aminopropyl-functionalized hybrid skinny movies with modulable floor and environment-responsive conduct. Chem. Mater. 20, 4661–4668 (2008).
Soler-Illia, G. J. D. A. A. & Azzaroni, O. Multifunctional hybrids by combining ordered mesoporous supplies and macromolecular constructing blocks. Chem. Soc. Rev. 40, 1107–1150 (2011).
Peterson, M. S. E., Baskaran, A. & Hagan, M. F. Vesicle form transformations pushed by confined energetic filaments. Nat. Commun. 12, 7247 (2021).
Seara, D. S. et al. Entropy manufacturing price is maximized in non-contractile actomyosin. Nat. Commun. 9, 4948 (2018).