Tuesday, July 12, 2022
HomeChemistryDeep studying for improvement of natural optoelectronic gadgets: environment friendly prescreening of...

Deep studying for improvement of natural optoelectronic gadgets: environment friendly prescreening of hosts and emitters in deep-blue fluorescent OLEDs


  • Capelli, R. et al. Natural light-emitting transistors with an effectivity that outperforms the equal light-emitting diodes. Nat. Mater. 9, 496–503 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Gao, Y. et al. Extremely environment friendly natural tandem photo voltaic cell with a SubPc interlayer based mostly on TAPC:C70 bulk heterojunction. Sci. Rep. 6, 23916 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Salehi, A. et al. Realization of high-efficiency fluorescent natural light-emitting diodes with low driving voltage. Nat. Commun. 10, 2305 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fukagawa, H. et al. Understanding coordination response for producing secure electrode with varied low work features. Nat. Commun. 11, 3700 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Hou, B. L. et al. Facile era of bridged medium-sized polycyclic techniques by rhodium-catalysed intramolecular (3+2) dipolar cycloadditions. Nat. Commun. 12, 5239 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wan, Y. et al. Information pushed discovery of conjugated polyelectrolytes for optoelectronic and photocatalytic purposes. npj Comput. Mater. 7, 1–9 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vasilopoulou, M. et al. Excessive effectivity blue natural light-emitting diodes with below-bandgap electroluminescence. Nat. Commun. 12, 4868 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Vebber, M. C., Rice, N. A., Brusso, J. L. & Lessard, B. H. Variance-resistant PTB7 and axially-substituted silicon phthalocyanines as lively supplies for high-Voc natural photovoltaics. Sci. Rep. 11, 15347 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Fukui, Okay., Yonezawa, T. & Shingu, H. A molecular orbital concept of reactivity in fragrant hydrocarbons. J. Chem. Phys. 20, 722–725 (1952).

    CAS 
    Article 

    Google Scholar
     

  • Fukui, Okay., Yonezawa, T., Nagata, C. & Shingu, H. Molecular orbital concept of orientation in fragrant, heteroaromatic, and different conjugated molecules. J. Chem. Phys. 22, 1433–1442 (1954).

    CAS 
    Article 

    Google Scholar
     

  • Shockley, W. & Queisser, H. J. Detailed stability restrict of effectivity of p‐n junction photo voltaic cells. J. Appl. Phys. 32, 510–519 (1961).

    CAS 
    Article 

    Google Scholar
     

  • Son, H. J., He, F., Carsten, B. & Yu, L. Are we there but? Design of higher conjugated polymers for polymer photo voltaic cells. J. Mater. Chem. 21, 18934–18945 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Fukagawa, H., Shimizu, T., Iwasaki, Y. & Yamamoto, T. Operational lifetimes of natural light-emitting diodes dominated by Forster resonance power switch. Sci. Rep. 7, 1735 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chang, C.-H. et al. Aligned energy-level design for reducing operation voltage of tandem white natural light-emitting diodes. Skinny Stable Movies 548, 389–397 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Yadav, R. A. Okay., Dubey, D. Okay., Chen, S. Z., Liang, T. W. & Jou, J. H. Position of molecular orbital power ranges in OLED efficiency. Sci. Rep. 10, 9915 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Bauschlicher, C. W. TaFn and TaCln atomization energies for n = 1–5. J. Phys. Chem. A 104, 5843–5849 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Y.-Y. et al. A DFT research on the enthalpies of thermite reactions and enthalpies of formation of steel composite oxide. Chem. Phys. 507, 19–27 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Joung, J. F., Kim, S. & Park, S. Cationic impact on the equilibria and kinetics of the excited-state proton switch response of a photoacid in aqueous options. J. Phys. Chem. B 122, 5087–5093 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Mumit, M. A. et al. DFT research on vibrational and digital spectra, HOMO-LUMO, MEP, HOMA, NBO and molecular docking evaluation of benzyl-3-N-(2,4,5-trimethoxyphenylmethylene)hydrazinecarbodithioate. J. Mol. Struct. 1220, 128715 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kim, H. J. et al. Extremely‐deep‐blue aggregation‐induced delayed fluorescence emitters: reaching practically 16% EQE in resolution‐processed nondoped and doped OLEDs with CIEy<0.1. Adv. Funct. Mater. 31, 2102588 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Ha, J. M. et al. Rational molecular design of azaacene-based narrowband green-emitting fluorophores: modulation of spectral bandwidth and vibronic transitions. ACS Appl. Mater. Interfaces 13, 26227–26236 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Montavon, G. et al. Machine studying of molecular digital properties in chemical compound area. N. J. Phys. 15, 095003 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Pereira, F. et al. Machine studying strategies to foretell density purposeful concept B3LYP energies of HOMO and LUMO orbitals. J. Chem. Inf. Mannequin. 57, 11–21 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Nagasawa, S., Al-Naamani, E. & Saeki, A. Pc-aided screening of conjugated polymers for natural photo voltaic cell: classification by Random Forest. J. Phys. Chem. Lett. 9, 2639–2646 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Coley, C. W. et al. A graph-convolutional neural community mannequin for the prediction of chemical reactivity. Chem. Sci. 10, 370–377 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Jha, D. et al. Enhancing supplies property prediction by leveraging computational and experimental knowledge utilizing deep switch studying. Nat. Commun. 10, 5316 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Mater, A. C. & Coote, M. L. Deep studying in chemistry. J. Chem. Inf. Mannequin. 59, 2545–2559 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Lim, J. et al. Predicting drug-target interplay utilizing a novel graph neural community with 3D structure-embedded graph illustration. J. Chem. Inf. Mannequin. 59, 3981–3988 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Kang, B., Seok, C. & Lee, J. Prediction of molecular digital transitions utilizing random forests. J. Chem. Inf. Mannequin. 60, 5984–5994 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Meftahi, N. et al. Machine studying property prediction for natural photovoltaic gadgets. npj Comput. Mater. 6, 166 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Haghighatlari, M. et al. Studying to make chemical predictions: the interaction of function illustration, knowledge, and machine studying strategies. Chem 6, 1527–1542 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Sandfort, F., Strieth-Kalthoff, F., Kühnemund, M., Beecks, C. & Glorius, F. A structure-based platform for predicting chemical reactivity. Chem 6, 1379–1390 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Qiao, B. et al. Quantitative mapping of molecular substituents to macroscopic properties permits predictive design of oligoethylene glycol-based lithium electrolytes. ACS Cent. Sci. 6, 1115–1128 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wu, Y., Guo, J., Solar, R. & Min, J. Machine studying for accelerating the invention of high-performance donor/acceptor pairs in non-fullerene natural photo voltaic cells. npj Comput. Mater. 6, 1–8 (2020).

    Article 

    Google Scholar
     

  • Lee, S. et al. Computational screening of trillions of metal-organic frameworks for high-performance methane storage. ACS Appl. Mater. Interfaces 13, 23647–23654 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Mamede, R., Pereira, F. & Aires-de-Sousa, J. Machine studying prediction of UV-Vis spectra options of natural compounds associated to photoreactive potential. Sci. Rep. 11, 23720 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Kang, B., Seok, C. & Lee, J. A benchmark research of machine studying strategies for molecular digital transition: Tree‐based mostly ensemble studying versus graph neural community. Bull. Korean Chem. Soc. 43, 328–335 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Ksenofontov, A. A., Lukanov, M. M., Bocharov, P. S., Berezin, M. B. & Tetko, I. V. Deep neural community mannequin for extremely correct prediction of BODIPYs absorption. Spectroc. Acta Pt. A-Molec. BioMolec. Spectr. 267, 120577 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Schutt, Okay. T., Sauceda, H. E., Kindermans, P. J., Tkatchenko, A. & Muller, Okay. R. SchNet – a deep studying structure for molecules and supplies. J. Chem. Phys. 148, 241722 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Hou, F. et al. Comparability research on the prediction of a number of molecular properties by varied neural networks. J. Phys. Chem. A 122, 9128–9134 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Anderson, B., Hy, T. S. & Kondor, R. Cormorant: Covariant Molecular Neural Networks. In Advances in neural info processing techniques. Vol. 32, 14537–14546 (NIPS, 2019).

  • Lu, C. et al. Molecular Property Prediction: A Multilevel Quantum Interactions Modeling Perspective. In Proc. AAAI Convention on Synthetic Intelligence. Vol. 33, 1052–1060 (AAAI, 2019).

  • Klicpera, J., Groß, J. & Günnemann, S. Directional Message Passing for Molecular Graphs. In Proc. eighth Worldwide Convention on Studying Representations. (ICLR, 2020).

  • Ye, S. et al. Uneven anthracene derivatives as multifunctional digital supplies for developing simplified and environment friendly non-doped homogeneous deep blue fluorescent OLEDs. Chem. Eng. J. 393, 124694 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Rahaman, O. & Gagliardi, A. Deep studying whole energies and orbital energies of huge natural molecules utilizing hybridization of molecular fingerprints. J. Chem. Inf. Mannequin. 60, 5971–5983 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Yang, G.-X. et al. Rational design of pyridine-containing emissive supplies for prime efficiency deep-blue natural light-emitting diodes with CIEy ~ 0.06. Dyes Pigment. 187, 109088 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Liu, Z. et al. Transferable multilevel consideration neural community for correct prediction of quantum chemistry properties by way of multitask studying. J. Chem. Inf. Mannequin. 61, 1066–1082 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Kwon, Y., Kang, S., Choi, Y. S. & Kim, I. Evolutionary design of molecules based mostly on deep studying and a genetic algorithm. Sci. Rep. 11, 17304 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Blum, L. C. & Reymond, J. L. 970 million druglike small molecules for digital screening within the chemical universe database GDB-13. J. Am. Chem. Soc. 131, 8732–8733 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Ramakrishnan, R., Dral, P. O., Rupp, M. & von Lilienfeld, O. A. Quantum chemistry constructions and properties of 134 kilo molecules. Sci. Information 1, 140022 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Kim, S. et al. PubChem substance and compound databases. Nucleic Acids Res. 44, D1202–1213 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Stuke, A. et al. Atomic constructions and orbital energies of 61,489 crystal-forming natural molecules. Sci. Information 7, 58 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, G. & Musgrave, C. B. Comparability of DFT strategies for molecular orbital eigenvalue calculations. J. Phys. Chem. A 111, 1554–1561 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Joung, J. F. et al. Deep studying optical spectroscopy based mostly on experimental database: potential purposes to molecular design. JACS Au 1, 427–438 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Bucinskas, A. et al. Can attachment of tert-butyl substituents to methoxycarbazole moiety induce environment friendly TADF in diphenylsulfone-based blue OLED emitters? Org. Electron. 86, 105894 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Solar, Okay. et al. Novel aggregation-induced emission and thermally activated delayed fluorescence supplies based mostly on thianthrene-9,9′,10,10′-tetraoxide derivatives. RSC Adv. 6, 22137–22143 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, W. et al. Molecular optimization permits over 13% effectivity in natural photo voltaic cells. J. Am. Chem. Soc. 139, 7148–7151 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Ge, J. et al. Improved effectivity in all-small-molecule natural photo voltaic cells with ternary mix of nonfullerene acceptor and chlorinated and nonchlorinated donors. ACS Appl. Mater. Interfaces 11, 44528–44535 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Joung, J. F., Han, M., Jeong, M. & Park, S. Experimental database of optical properties of natural compounds. Sci. Information 7, 295 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Gao, Y. & Cui, Y. Deep switch studying for decreasing well being care disparities arising from biomedical knowledge inequality. Nat. Commun. 11, 5131 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zhu, R. et al. Section-to-pattern inverse design paradigm for quick realization of purposeful metasurfaces by way of switch studying. Nat. Commun. 12, 2974 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Lu, T., Han, B., Chen, L., Yu, F. & Xue, C. A generic clever tomato classification system for sensible purposes utilizing DenseNet-201 with switch studying. Sci. Rep. 11, 15824 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Kim, Y. et al. Deep studying framework for materials design area exploration utilizing lively switch studying and knowledge augmentation. npj Comput. Mater. 7, 140 (2021).

    Article 

    Google Scholar
     

  • Zhuang, F. et al. A complete survey on switch studying. In Proceedings of the IEEE. Vol. 109, 43–76 (IEEE, 2021).

  • Wang, Z. et al. Predicting adsorption capability of adsorbents at arbitrary websites for pollution utilizing deep switch studying. npj Comput. Mater. 7, 1–9 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Gaussian 16 (Gaussian Inc., Wallingford, CT, 2016).

  • Nakata, M. & Shimazaki, T. PubChemQC Venture: a large-scale first-principles digital construction database for data-driven chemistry. J. Chem. Inf. Mannequin. 57, 1300–1308 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In Proceedings of the thirty fourth Worldwide Convention on Machine Studying. Vol. 70, 1263–1272 (PMLR, 2017).

  • Kylberg, W. et al. Synthesis, thin-film morphology, and comparative research of bulk and bilayer heterojunction natural photovoltaic gadgets utilizing soluble diketopyrrolopyrrole molecules. Power Environ. Sci. 4, 3617–3624 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Yang, D. et al. Novel excessive efficiency asymmetrical squaraines for small molecule natural photo voltaic cells with a excessive open circuit voltage of 1.12 V. Chem. Commun. 49, 10465–10467 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Park, J. B., Ha, J.-W., Jung, I. H. & Hwang, D.-H. Excessive-performance nonfullerene natural photovoltaic cells utilizing a TPD-based vast bandgap donor polymer. ACS Appl. Energ. Mater. 2, 5692–5697 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Ma, J., Liu, T. X., Zhang, P., Zhao, X. & Zhang, G. Metallic-free-catalyzed three-component [2+2+2] annulation response of [60]Fullerene, ketones, and indoles: entry to numerous [60]Fullerene-fused 1,2-tetrahydrocarbazoles. Org. Lett. 23, 1775–1781 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Kawamura, Y. et al. 100% phosphorescence quantum effectivity of Ir(III) complexes in natural semiconductor movies. Appl. Phys. Lett. 86, 071104 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Jeong, S. H. & Lee, J. Y. Dibenzothiophene derivatives as host supplies for prime effectivity in deep blue phosphorescent natural gentle emitting diodes. J. Mater. Chem. 21, 14604–14609 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Q. et al. Triplet exciton confinement in inexperienced natural light-emitting diodes containing luminescent charge-transfer Cu(I) complexes. Adv. Funct. Mater. 22, 2327–2336 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Wang, H. et al. Novel thermally activated delayed fluorescence materials-thioxanthone derivatives and their purposes for extremely environment friendly OLEDs. Adv. Mater. 26, 5198–5204 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Q. et al. Environment friendly blue natural light-emitting diodes using thermally activated delayed fluorescence. Nat. Photonics 8, 326–332 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Baranoff, E. & Curchod, B. F. FIrpic: archetypal blue phosphorescent emitter for electroluminescence. Dalton Trans. 44, 8318–8329 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Hirai, H. et al. One-Step Borylation of 1,3-Diaryloxybenzenes in direction of environment friendly supplies for natural light-emitting diodes. Angew. Chem. Int. Ed. 54, 13581–13585 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Cho, Y. J., Chin, B. D., Jeon, S. Okay. & Lee, J. Y. 20% exterior quantum effectivity in solution-processed blue thermally activated delayed fluorescent gadgets. Adv. Funct. Mater. 25, 6786–6792 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Shirota, Y. et al. Starburst molecules based mostly on π-electron techniques as supplies for natural electroluminescent gadgets. J. Lumines 72-74, 985–991 (1997).

    CAS 
    Article 

    Google Scholar
     

  • Chen, M.-H. et al. Digital and chemical properties of cathode constructions utilizing 4,7-diphenyl-1,10-phenanthroline doped with rubidium carbonate as electron injection layers. J. Appl. Phys. 105, 113714 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Lee, C. W. & Lee, J. Y. Comparability of tetraphenylmethane and tetraphenylsilane as core constructions of high-triplet-energy hole- and electron-transport supplies. Chem. Eur. J. 18, 6457–6461 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Wang, J. et al. Excessive effectivity inexperienced phosphorescent natural light-emitting diodes with a low roll-off at excessive brightness. Org. Electron. 14, 2854–2858 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Yan, L. et al. Palladium-catalyzed tandem N-H/C-H arylation: regioselective synthesis of N-heterocycle-fused phenanthridines as versatile blue-emitting luminophores. Org. Biomol. Chem. 11, 7966–7977 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Chen, Y., Shen, L. & Li, X. Results of heteroatoms of tetracene and pentacene derivatives on their stability and singlet fission. J. Phys. Chem. A 118, 5700–5708 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Nakano, M., Niimi, Okay., Miyazaki, E., Osaka, I. & Takimiya, Okay. Isomerically pure anthra[2,3-b:6,7-b’]-difuran (anti-ADF), -dithiophene (anti-ADT), and -diselenophene (anti-ADS): selective synthesis, digital constructions, and software to natural field-effect transistors. J. Org. Chem. 77, 8099–8111 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Huang, J. et al. Tuning frontier orbital energetics of azaisoindigo-based polymeric semiconductors to reinforce the charge-transport properties. Adv. Electron. Mater. 3, 1700078 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Landrum, G. Open-source cheminformatics; http://www.rdkit.org.

  • Chollet, F. et al. Keras, https://keras.io (2015).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments