Tuesday, July 12, 2022
HomeChemistryA complete overview on the chemical regeneration of biochar adsorbent for sustainable...

A complete overview on the chemical regeneration of biochar adsorbent for sustainable wastewater therapy


  • Din Dar, M. U. et al. Blue inexperienced infrastructure as a instrument for sustainable city growth. J. Clear. Prod. 318, 128474 (2021).

    Article 

    Google Scholar
     

  • Elbeltagi, A. et al. Purposes of Gaussian course of regression for predicting blue water footprint: case research in Advert Daqahliyah, Egypt. Agric. Water Manag. 255, (2021).

  • Solar, Y. et al. The potential of biochar and lignin-based adsorbents for wastewater therapy: comparability, mechanism, and utility—a overview. Ind. Crops Prod. 166, (2021).

  • Palansooriya, Okay. N. et al. Incidence of contaminants in ingesting water sources and the potential of biochar for water high quality enchancment: a overview. Crit. Rev. Environ. Sci. Technol. 50, 549–611 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Shah, A. I. et al. Prospectives and challenges of wastewater therapy applied sciences to fight contaminants of rising issues. Ecol. Eng. 152, 105882 (2020).

    Article 

    Google Scholar
     

  • Liu, F., Zhu, S., Li, D., Chen, G. & Ho, S. H. Detecting ferric iron by microalgal residue-derived fluorescent nanosensor with a sophisticated kinetic mannequin. iScience 23, (2020).

  • Bhat, S. A. et al. Sustainable nanotechnology based mostly wastewater therapy methods: achievements, challenges and future views. Chemosphere 288, 132606 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wu, W., Shi, Y., Liu, G., Fan, X. & Yu, Y. Latest growth of graphene oxide based mostly ahead osmosis membrane for water therapy: a essential overview. Desalination 491, 114452 (2020).

    CAS 
    Article 

    Google Scholar
     

  • de Araujo, C. M. B. et al. Wastewater therapy utilizing recyclable agar-graphene oxide biocomposite hydrogel in batch and fixed-bed adsorption column: bench experiments and modeling for the selective elimination of organics. Colloids Surf. A Physicochem. Eng. Asp. 639, 128357 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mohammed, R. H. et al. Metallic-organic frameworks in cooling and water desalination: synthesis and utility. Renew. Maintain. Power Rev. 149, 111362 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Yin, X. et al. Phosphate elimination from precise wastewater by way of La(OH)3-C3N4 adsorption: efficiency, mechanisms and applicability. Sci. Whole Environ. 814, 152791 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Qasem, N. A. A. & Mohammed, R. H. Elimination of heavy steel ions from wastewater: a complete and important overview. npj Clear Water https://doi.org/10.1038/s41545-021-00127-0.

  • Wu, Z. et al. Powerful porous nanocomposite hydrogel for water therapy. J. Hazard. Mater. 421, 126745 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y., Yu, H., Liu, L. & Yu, H. Software of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates. J. Hazard. Mater. 420, 126655 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Ogura, A. P. et al. A overview of pesticides sorption in biochar from maize, rice, and wheat residues: present standing and challenges for soil utility. J. Environ. Handle. 300, 113753 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y., Cui, C., Zhang, G., Xin, Y. & Wang, S. Electrocatalytic hydrodechlorination of pentachlorophenol on Pd-supported magnetic biochar particle electrodes. Sep. Purif. Technol. 258, 118017 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Track, B. et al. Preparation of nano-biochar from standard biorefineries for high-value purposes. Renew. Maintain. Power Rev. 157, 112057 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Li, C. et al. Multi-functional biochar preparation and heavy steel immobilization by co-pyrolysis of livestock feces and biomass waste. Waste Manag. 134, 241–250 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Li, Y., Xing, B., Ding, Y., Han, X. & Wang, S. A essential overview of the manufacturing and superior utilization of biochar by way of selective pyrolysis of lignocellulosic biomass. Bioresour. Technol. 312, 123614 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Barquilha, C. E. R. & Braga, M. C. B. Adsorption of natural and inorganic pollution onto biochars: challenges, working situations, and mechanisms. Bioresour. Technol. Rep. 15, 100728 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Herath, A. et al. KOH-activated excessive floor space Douglas Fir biochar for adsorbing aqueous Cr(VI), Pb(II) and Cd(II). Chemosphere 269, 134893 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wan, S. et al. Enhanced lead and cadmium elimination utilizing biochar-supported hydrated manganese oxide (HMO) nanoparticles: Habits and mechanism. Sci. Whole Environ. 616–617, 1298–1306 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Omorogie, M. O., Babalola, J. O. & Unuabonah, E. I. Regeneration methods for spent strong matrices utilized in adsorption of natural pollution from floor water: a essential overview. Desalin. Water Deal with. 57, 518–544 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Liao, Y. et al. Environment friendly elimination mechanism and microbial traits of tidal stream constructed wetland based mostly on in-situ biochar regeneration (BR-TFCW) for rural grey water. Chem. Eng. J. 431, 134185 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Sabio, E. et al. Thermal regeneration of activated carbon saturated with p-nitrophenol. Carbon N.Y. 42, 2285–2293 (2004).

    CAS 
    Article 

    Google Scholar
     

  • San Miguel, G., Lambert, S. D. & Graham, N. J. D. The regeneration of field-spent granular-activated carbons. Water Res. 35, 2740–2748 (2001).

    CAS 
    Article 

    Google Scholar
     

  • U.S. EPA. Wastewater know-how truth sheet – granular activated carbon adsorption and regeneration. U.S. Environ. Prot. Company EPA 832-F-, 1–7 (2000).


    Google Scholar
     

  • Iamsaard, Okay. et al. Adsorption of steel on pineapple leaf biochar: Key affecting components, mechanism identification, and regeneration analysis. Bioresour. Technol. 344, 126131 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Scopus. Scopus – Doc search | Signed in. Doc search https://www.scopus.com/search/kind.uri?show=fundamental#fundamental (2021).

  • Hassan, M., Naidu, R., Du, J., Liu, Y. & Qi, F. Important overview of magnetic biosorbents: their preparation, utility, and regeneration for wastewater therapy. Sci. Whole Environ. 702, 134893 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Amen, R. et al. A essential overview on arsenic elimination from water utilizing biochar-based sorbents: the importance of modification and redox reactions. Chem. Eng. J. 396, 125195 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wu, Z., Chen, X., Yuan, B. & Fu, M. L. A facile foaming-polymerization technique to arrange 3D MnO2 modified biochar-based porous hydrogels for environment friendly elimination of Cd(II) and Pb(II). Chemosphere 239, 124745 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Dai, Y., Zhang, N., Xing, C., Cui, Q. & Solar, Q. The adsorption, regeneration and engineering purposes of biochar for elimination natural pollution: a overview. Chemosphere 223, 12–27 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Zubair, M., Ihsanullah, I., Abdul Aziz, H., Azmier Ahmad, M. & Al-Harthi, M. A. Sustainable wastewater therapy by biochar/layered double hydroxide composites: Progress, challenges, and outlook. Bioresour. Technol. 319, 124128 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Gokulan, R., Avinash, A., Prabhu, G. G. & Jegan, J. Remediation of remazol dyes by biochar derived from Caulerpa scalpelliformis – An eco-friendly strategy. J. Environ. Chem. Eng. 7, 103297 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wu, J., Yang, J., Huang, G., Xu, C. & Lin, B. Hydrothermal carbonization synthesis of cassava slag biochar with glorious adsorption efficiency for Rhodamine B. J. Clear. Prod. 251, 119717 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zeng, Z. et al. Analysis on the sustainable efficacy of g-MoS2 embellished biochar nanocomposites for eradicating tetracycline hydrochloride from antibiotic-polluted aqueous answer. Sci. Whole Environ. 648, 206–217 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Jia, Y. et al. A novel magnetic biochar/MgFe-layered double hydroxides composite eradicating Pb2+ from aqueous answer: Isotherms, kinetics and thermodynamics. Colloids Surf. A Physicochem. Eng. Asp. 567, 278–287 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Gao, L. et al. Impacts of pyrolysis temperature on lead adsorption by cotton stalk-derived biochar and associated mechanisms. J. Environ. Chem. Eng. 9, 105602 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Niu, Z. et al. Inexperienced synthesis of a novel Mn–Zn ferrite/biochar composite from waste batteries and pine sawdust for Pb2+ elimination. Chemosphere 252, 126529 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ahmed, W. et al. Enhanced adsorption of aqueous Pb(II) by modified biochar produced by pyrolysis of watermelon seeds. Sci. Whole Environ. 784, 147136 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Miao, Q. & Li, G. Potassium phosphate/magnesium oxide modified biochars: Interfacial chemical behaviours and Pb binding efficiency. Sci. Whole Environ. 759, 143452 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Bogusz, A., Nowak, Okay., Stefaniuk, M., Dobrowolski, R. & Oleszczuk, P. Synthesis of biochar from residues after biogas manufacturing with respect to cadmium and nickel elimination from wastewater. J. Environ. Manag. 201, 268–276 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Choudhary, M., Kumar, R. & Neogi, S. Activated biochar derived from Opuntia ficus-indica for the environment friendly adsorption of malachite inexperienced dye, Cu+2 and Ni+2 from water. J. Hazard. Mater. 392, 122441 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ding, Z., Hu, X., Wan, Y., Wang, S. & Gao, B. Elimination of lead, copper, cadmium, zinc, and nickel from aqueous options by alkali-modified biochar: batch and column checks. J. Ind. Eng. Chem. 33, 239–245 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Liu, J. et al. Preparation of Si–Mn/biochar composite and discussions about characterizations, advances in utility and adsorption mechanisms. Chemosphere 281, 130946 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Pan, J. et al. Waste-to-resources: inexperienced preparation of magnetic biogas residues-based biochar for efficient heavy steel removals. Sci. Whole Environ. 737, 140283 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Gayathri, R., Gopinath, Okay. P. & Kumar, P. S. Adsorptive separation of poisonous metals from aquatic surroundings utilizing agro waste biochar: Software in electroplating industrial wastewater. Chemosphere 262, 128031 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y. Y., Liu, Y. X., Lu, H. H., Yang, R. Q. & Yang, S. M. Aggressive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous options. J. Stable State Chem. 261, 53–61 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, W. et al. Novel pectin based mostly composite hydrogel derived from grapefruit peel for enhanced Cu(II) elimination. J. Hazard. Mater. 384, 121445 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wu, J., Wang, T., Wang, J., Zhang, Y. & Pan, W. P. A novel modified methodology for the environment friendly elimination of Pb and Cd from wastewater by biochar: Enhanced the ion trade and precipitation capability. Sci. Whole Environ. 754, 142150 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Lam, Y. Y., Lau, S. S. S. & Wong, J. W. C. Elimination of Cd(II) from aqueous options utilizing plant-derived biochar: kinetics, isotherm and characterization. Bioresour. Technol. Rep. 8, 100323 (2019).

    Article 

    Google Scholar
     

  • Kołodyńska, D., Krukowska, J. & Thomas, P. Comparability of sorption and desorption research of heavy steel ions from biochar and business lively carbon. Chem. Eng. J. 307, 353–363 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Growth of an acidized biochar-supported hydrated Fe(III) oxides for extremely environment friendly cadmium and copper sequestration from water. Sci. Whole Environ. 784, 147017 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Vigneshwaran, S., Sirajudheen, P., Karthikeyan, P. & Meenakshi, S. Fabrication of sulfur-doped biochar derived from tapioca peel waste with superior adsorption efficiency for the elimination of Malachite inexperienced and Rhodamine B dyes. Surf. Interfaces 23, 100920 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Jabar, J. M. & Odusote, Y. A. Elimination of cibacron blue 3G-A (CB) dye from aqueous answer utilizing chemo-physically activated biochar from oil palm empty fruit bunch fiber. Arab. J. Chem. 13, 5417–5429 (2020).

    CAS 
    Article 

    Google Scholar
     

  • He, J., Cui, A., Deng, S. & Chen, J. P. Remedy of methylene blue containing wastewater by an economical micro-scale biochar/polysulfone blended matrix hole fiber membrane: efficiency and mechanism research. J. Colloid Interface Sci. 512, 190–197 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Fan, S. et al. Elimination of methylene blue from aqueous answer by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. J. Environ. Chem. Eng. 5, 601–611 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Fernando, J. C. et al. Nitric acid floor pre-modification of novel Lasia spinosa biochar for enhanced methylene blue remediation. Groundw. Maintain. Dev. 14, 100603 (2021).

    Article 

    Google Scholar
     

  • Chakhtouna, H., Benzeid, H., Zari, N., Qaiss, A. E. Okay. & Bouhfid, R. Purposeful CoFe2O4-modified biochar derived from banana pseudostem as an environment friendly adsorbent for the elimination of amoxicillin from water. Sep. Purif. Technol. 266, 118592 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Sayin, F., Akar, S. T. & Akar, T. From inexperienced biowaste to water therapy purposes: Utilization of modified new biochar for the environment friendly elimination of ciprofloxacin. Maintain. Chem. Pharm. 24, 100522 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Parsa, M., Nourani, M., Baghdadi, M., Hosseinzadeh, M. & Pejman, M. Biochars derived from marine macroalgae as a mesoporous by-product of hydrothermal liquefaction course of: characterization and utility in wastewater therapy. J. Water Course of Eng. 32, 100942 (2019).

    Article 

    Google Scholar
     

  • Ma, Y. et al. Hydrothermal synthesis of magnetic sludge biochar for tetracycline and ciprofloxacin adsorptive elimination. Bioresour. Technol. 319, 124199 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, S. et al. Fabrication of L-cysteine stabilized α-FeOOH nanocomposite on porous hydrophilic biochar as an efficient adsorbent for Pb2+ elimination. Sci. Whole Environ. 720, 137415 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Bogusz, A., Oleszczuk, P. & Dobrowolski, R. Software of laboratory ready and commercially obtainable biochars to adsorption of cadmium, copper and zinc ions from water. Bioresour. Technol. 196, 540–549 (2015).

    CAS 
    Article 

    Google Scholar
     

  • do Nascimento, B. F. et al. Adsorption of Reactive Black 5 and Primary Blue 12 utilizing biochar from gasification residues: batch checks and fixed-bed breakthrough predictions for wastewater therapy. Bioresour. Technol. Rep. 15, 100767 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Khan, Z. & Anjaneyulu, Y. Affect of soil parts on adsorption-desorption of hazardous organics-development of low price know-how for reclamation of hazardous waste dumpsites. J. Hazard. Mater. 118, 161–169 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Mohan, D., Sarswat, A., Okay, Y. S. & Pittman, C. U. Natural and inorganic contaminants elimination from water with biochar, a renewable, low price and sustainable adsorbent – a essential overview. Bioresour. Technol. 160, 191–202 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Wang, S. et al. Calcite modification of agricultural waste biochar extremely improves the adsorption of Cu(II) from aqueous options. J. Environ. Chem. Eng. 9, 106215 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Yu, J., Zhu, Z., Zhang, H., Qiu, Y. & Yin, D. Mg–Fe layered double hydroxide assembled on biochar derived from rice husk ash: facile synthesis and utility in environment friendly elimination of heavy metals. Environ. Sci. Pollut. Res. 25, 24293–24304 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Ahmed, M. B. et al. Chloramphenicol interplay with functionalized biochar in water: sorptive mechanism, molecular imprinting impact and repeatable utility. Sci. Whole Environ. 609, 885–895 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Yang, Z., Yang, X., Wang, T., Hu, R. & Wu, J. Oxygen-functionalized Typha angustifolia biochars derived from varied pyrolysis temperatures: Physicochemical properties, heavy steel seize behaviors and mechanism. Colloids Surf. A Physicochem. Eng. Asp. 628, 127259 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Ravindiran, G., Saravanan, P., Alagumalai, A. & Subbarayan, S. Gentle computing-based fashions and decolorization of Reactive Yellow 81 utilizing Ulva Prolifera biochar. Chemosphere 287, 132368 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Cheng, S. et al. Excessive-efficiency elimination of lead/cadmium from wastewater by MgO modified biochar derived from crofton weed. Bioresour. Technol. 343, 126081 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, P. et al. A inexperienced biochar/iron oxide composite for methylene blue elimination. J. Hazard. Mater. 384, 121286 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zazycki, M. A. et al. Chitin derived biochar in its place adsorbent to deal with coloured effluents containing methyl violet dye. Adv. Powder Technol. 30, 1494–1503 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Liatsou, I., Pashalidis, I. & Dosche, C. Cu(II) adsorption on 2-thiouracil-modified Luffa cylindrica biochar fibres from synthetic and actual samples, and competitors reactions with U(VI). J. Hazard. Mater. 383, 120950 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Huling, S. G., Jones, P. Okay., Ela, W. P. & Arnold, R. G. Fenton-driven chemical regeneration of MTBE-spent GAC. Water Res. 39, 2145–2153 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Chen, Q., Liu, H., Yang, Z. & Tan, D. Regeneration efficiency of spent granular activated carbon for tertiary therapy of dyeing wastewater by Fenton reagent and hydrogen peroxide. J. Mater. Cycles Waste Manag. 19, 256–264 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Salvador, F., Martin-Sanchez, N., Sanchez-Hernandez, R., Sanchez-Montero, M. J. & Izquierdo, C. Regeneration of carbonaceous adsorbents. Half II: chemical, microbiological and vacuum regeneration. Microporous Mesoporous Mater. 202, 277–296 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Lata, S., Singh, P. Okay. & Samadder, S. R. Regeneration of adsorbents and restoration of heavy metals: a overview. Int. J. Environ. Sci. Technol. 12, 1461–1478 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Baskar, A. V. et al. Restoration, regeneration and sustainable administration of spent adsorbents from wastewater therapy streams: a overview. Sci. Whole Environ. 822, 153555 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Liu, X., Shen, F., Smith, R. L. & Qi, X. Black liquor-derived calcium-activated biochar for restoration of phosphate from aqueous options. Bioresour. Technol. 294, 122198 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Martín-Lara, M. A., Blázquez, G., Ronda, A. & Calero, M. Kinetic research of the pyrolysis of pine cone shell by non-isothermal thermogravimetry: Impact of heavy metals integrated by biosorption. Renew. Power 96, 613–624 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Fuke, P. et al. Position of microbial range to affect the expansion and environmental remediation capability of bamboo: a overview. Ind. Crops Prod. 167, 113567 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Funke, A. & Ziegler, F. Hydrothermal carbonization of biomass: a abstract and dialogue of chemical mechanisms for course of engineering. Biofuels Bioref. 4, 160–177 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, C. et al. Oxidative torrefaction of biomass nutshells: evaluations of vitality effectivity in addition to biochar transportation and storage. Appl. Power 235, 428–441 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Nunoura, T., Wade, S. R., Bourke, J. P. & Antal, M. J. Research of the flash carbonization course of. 1. propagation of the flaming pyrolysis response and efficiency of a catalytic afterburner. Ind. Eng. Chem. Res. 45, 585–599 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Cantrell, Okay. B., Hunt, P. G., Uchimiya, M., Novak, J. M. & Ro, Okay. S. Affect of pyrolysis temperature and manure supply on physicochemical traits of biochar. Bioresour. Technol. 107, 419–428 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Klinghoffer, N. B., Castaldi, M. J. & Nzihou, A. Affect of char composition and inorganics on catalytic exercise of char from biomass gasification. Gasoline 157, 37–47 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Lin, S., Huang, W., Yang, H., Solar, S. & Yu, J. Recycling utility of waste long-root Eichhornia crassipes within the heavy steel elimination utilizing oxidized biochar derived as adsorbents. Bioresour. Technol. 314, 123749 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Qu, J. et al. Microwave-assisted one pot synthesis of β-cyclodextrin modified biochar for concurrent elimination of Pb(II) and bisphenol a in water. Carbohydr. Polym. 250, 117003 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Jiang, S. et al. Recyclable nitrogen-doped biochar by way of low-temperature pyrolysis for enhanced lead(II) elimination. Chemosphere 286, 131666 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Huang, Z. et al. Floor-functionalized pomelo peel-derived biochar with mercapto-1,2,4-triazloe for selective elimination of poisonous Pb (II) in aqueous options. Adv. Powder Technol. 32, 1013–1022 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Hammo, M. M., Akar, T., Sayin, F., Celik, S. & Akar, S. T. Efficacy of inexperienced waste-derived biochar for lead elimination from aqueous techniques: characterization, equilibrium, kinetic and utility. J. Environ. Manag. 289, 112490 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, J., Hu, X., Zhang, Okay. & Xue, Y. Desorption of calcium-rich crayfish shell biochar for the elimination of lead from aqueous options. J. Colloid Interface Sci. 554, 417–423 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wiśniewska, M. et al. Simultaneous elimination of poisonous Pb(II) ions, poly(acrylic acid) and Triton X-100 from their blended answer utilizing engineered biochars obtained from horsetail herb precursor – Affect of post-activation therapy. Sep. Purif. Technol. 276, 119297 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wan, S. et al. Accelerated antimony and copper elimination by manganese oxide embedded in biochar with enlarged pore construction. Chem. Eng. J. 402, 126021 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Yoon, Okay. et al. Fabrication of engineered biochar from paper mill sludge and its utility into elimination of arsenic and cadmium in acidic water. Bioresour. Technol. 246, 69–75 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Vigneshwaran, S., Sirajudheen, P., Nikitha, M., Ramkumar, Okay. & Meenakshi, S. Facile synthesis of sulfur-doped chitosan/biochar derived from tapioca peel for the elimination of natural dyes: Isotherm, kinetics and mechanisms. J. Mol. Liq. 326, 115303 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Chen, X. L., Li, F., Chen, H. Y., Wang, H. J. & Li, G. G. Fe2O3/TiO2 functionalized biochar as a heterogeneous catalyst for dyes degradation in water beneath Fenton processes. J. Environ. Chem. Eng. 8, 103905 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Park, J. H. et al. Adsorption/desorption conduct of cationic and anionic dyes by biochars ready at regular and excessive pyrolysis temperatures. Colloids Surf. A Physicochem. Eng. Asp. 572, 274–282 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Iqbal, M. M. et al. Efficient sequestration of Congo pink dye with ZnO/cotton stalks biochar nanocomposite: MODELING, reusability and stability. J. Saudi Chem. Soc. 25, 101176 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Meng, Q. et al. Elimination of sulfadiazine from aqueous answer by in-situ activated biochar derived from cotton shell. Environ. Res. 191, 110104 (2020).

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments